Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

fac-Tris(2-ethyl-4-oxo-4H-pyran-3-olato- $\kappa^{2} \mathrm{O}^{3}, \mathrm{O}^{4}$)iron(III) and its aluminium(III) analog

Mamiko Odoko,* Kyouta Yamamoto, Masahiro Hosen and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
Correspondence e-mail: odoko@phar.kindai.ac.jp

Received 23 January 2003
Accepted 19 February 2003
Online 11 March 2003

The crystal structures of the title iron(III) and aluminium(III) ethyl maltolate complexes, $\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{3}\right]$ and $\left[\mathrm{Al}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{3}\right]$, respectively, are isomorphous. In each case, the three bidentate ligand molecules are bound to the metal atom, forming a distorted octahedral coordination geometry in a fac configuration.

Comment

Pyranone ligands have remarkable properties for clinical purposes. These ligands are relevant to the control of metal levels in the body and have so far been tested for administration for the amelioration of anaemia (Hider et al., 1984a,b), and the removal of iron (Kontoghiorghes et al., 1990) and aluminium (Kontoghiorghes, 1995) overload. One of these ligands, viz. ethyl maltol (2-ethyl-3-hydroxy-4-pyranone), (I), is suitable for oral administration since it has no toxic effects. It has been tested for the characteristics of iron uptake (Levey et al., 1988; Maxton et al., 1994). In this study, in order to determine the chelating mode of ethyl maltol to the Fe^{3+} and Al^{3+} ions, we have analyzed the crystal structures of the title complexes, namely fac-tris(2-ethyl-4-oxo- 4 H -pyran-3-olato)iron(III), (II), and fac-tris(2-ethyl-4-oxo-4H-pyran-3-olato)aluminium(III), (III), which are isomorphous.

In (II), the Fe atom is bound by the deprotonated hydroxyl and ketone O atoms of three bidentate ligands, forming a distorted octahedral structure (Fig. 1). The chelating O atoms of each ligand form a five-membered chelate ring with the Fe atom. In the ligand molecule, the $\mathrm{C}-\mathrm{O}_{\text {keto }}$ bond lengths [$\mathrm{O} 3-$ $\mathrm{C} 4=1.262(4) \AA, \mathrm{O} 6-\mathrm{C} 11=1.259$ (4) \AA and $\mathrm{O} 9-\mathrm{C} 18=$ 1.262 (4) \AA] are longer than those of free ethyl maltol in the crystal [1.235 (2)-1.256 (6) Å; Brown et al., 1995], and the CO_{OH} bonds $[\mathrm{O} 2-\mathrm{C} 3=1.330(4) \AA, \mathrm{O} 5-\mathrm{C} 10=1.326(3) \AA$ and $\mathrm{O} 8-\mathrm{C} 17=1.321(4) \AA]$ are shorter than those of free ethyl maltol $[1.347$ (3) -1.356 (6) \AA] . This indicates the distinction between the two types of Lewis acid-base inter-
actions. The Fe atom lies in a trigonally distorted octahedral environment, coordinated to the six O atoms of three bidentate ligands in a fac configuration, that is, the three longer $\mathrm{Fe}-$ $\mathrm{O}_{\text {keto }}$ bonds $(\mathrm{Fe}-\mathrm{O} 3, \mathrm{Fe}-\mathrm{O} 6$ and $\mathrm{Fe}-\mathrm{O} 9)$ are cis to each other, and the three shorter $\mathrm{Fe}-\mathrm{O}_{\mathrm{OH}}$ bonds $(\mathrm{Fe}-\mathrm{O} 2, \mathrm{Fe}-\mathrm{O} 5$ and $\mathrm{Fe}-\mathrm{O} 8$) are also cis. The distortion of the octahedral environment is due to the differences found in the $\mathrm{Fe}-\mathrm{O}$ bond lengths $\left[\mathrm{Fe}-\mathrm{O}_{\text {keto }}=2.074\right.$ (2)-2.090 (2) \AA and $\mathrm{Fe}-$ $\left.\mathrm{O}_{\mathrm{OH}}=1.960(2)-1.969(2) \AA\right]$. This situation is similar to that in the crystal structure of the maltolate $-\mathrm{Fe}^{3+}$ complex (Ahmet et al., 1988). The differences between the $\mathrm{Fe}-\mathrm{O}_{\text {keto }}$ and $\mathrm{Fe}-$ O_{OH} bond lengths are due to the negative charge at the deprotonated O atom.

(I)

(II)

(III)

In (III), coordination about the Al atom is similar to that in (II). The Al atom is surrounded by six O atoms of three bidentate ligands in a fac configuration, resulting in a distorted octahedral environment (Fig. 2). In the ligand molecule, the $\mathrm{C}-\mathrm{O}_{\text {keto }}$ bond lengths $[\mathrm{O} 3-\mathrm{C} 4=1.274(6) \AA$, $\mathrm{O} 6-\mathrm{C} 11=$ 1.263 (6) \AA and $\mathrm{O} 9-\mathrm{C} 18=1.268$ (6) \AA] are longer than those of free ethyl maltol and the $\mathrm{C}-\mathrm{O}_{\mathrm{OH}}$ bonds $[\mathrm{O} 2-\mathrm{C} 3=$ $1.315(5) \AA, \quad \mathrm{O} 5-\mathrm{C} 10=1.329(5) \AA$ and $\mathrm{O} 8-\mathrm{C} 17=$ 1.321 (5) Å] are shorter than those of the free molecule. The overall conformational tendency of (III) is similar to that in the crystal structures of previously reported maltolate- Al^{3+} complexes (Finnegan et al., 1986; Yu et al., 2002).

Despite the conformational similarity of the crystal structures of (II) and (III), the bite angles, $\mathrm{O}-M-\mathrm{O}$, of the ethyl maltolate ligands are different. Those for the Fe^{3+} complex [range 80.39 (9)-80.79 (9) ${ }^{\circ}$] are smaller than those for the Al^{3+} complex [range $84.3(1)-84.6(1)^{\circ}$]. This correlates with the $M-\mathrm{O}$ bond lengths $[\mathrm{Fe}-\mathrm{O}=1.960$ (2) -2.090 (2) \AA and $\mathrm{Al}-$ $\mathrm{O}=1.860(3)-1.956(4) \AA$], viz. the steric constraint imposed by the ionic radii $\left(0.79 \AA\right.$ for Fe^{3+} and $0.68 \AA$ for Al^{3+}; Shannon, 1976).

Until now, the crystal structures of the Sn^{4+} (Lu et al., 1999; Alshehri et al., 2000), Ti^{4+} (Alshehri et al., 2000) and Bi^{3+} (Burgess et al., 1994) complexes of ethyl maltol have been reported. In these complexes, similar to (II) and (III), the metal atoms are bound by bidentate ligand molecules which form five-membered chelate rings. These structures, except for

Figure 1
ORTEPII (Johnson, 1976) drawing of (II), with the atomic numbering scheme. Ellipsoids for non-H atoms are shown at the 50% probability level.
the Ti^{4+} complex, show the same trends with regard to the increasing radius of the metal ion, i.e. the $M-\mathrm{O}$ bond lengths increase and the $\mathrm{O}-M-\mathrm{O}$ bond angles decrease with increasing ionic radius.

Comparing the two title complexes with the corresponding maltolate complexes shows that all four crystal structures are similar in the fact that the metal atoms are bound by six O

Figure 2
ORTEPII (Johnson, 1976) drawing of (III), with the atomic numbering scheme. Ellipsoids for non-H atoms are shown at the 50% probability level.
atoms of bidentate ligand molecules to form distorted octahedral structures, but are different with regard to their geometrical isomerism properties. In the ethyl maltolate complexes, the ligand molecules are coordinated in a fac configuration, in contrast with the maltolate complexes, which exhibit a mer configuration. This may be due to the bulky hydrophobic ethyl groups of the ethyl maltolate ligand molecules.

Experimental

For the preparation of (II), ethyl maltol and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (8:1 molar ratio) were dissolved in ethanol-water (4:6). Red pillar-shaped crystals of (II) were obtained by slow evaporation at room temperature. For the preparation of (III), ethyl maltol and Al$\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (3:1 molar ratio) were dissolved in ethanol-water (1:1). The pH of this solution was raised to about 8 by the addition of ammonia solution, and the resulting solution was then heated for a few minutes and cooled to room temperature. Colorless plate-shaped crystals of (III) were obtained by slow evaporation.

Compound (II)

Crystal data
$\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{3}\right]$
$M_{r}=473.23$
Monoclinic, $P 2_{1} / n$
$a=7.878$ (3) \AA
$b=8.818$ (4) \AA
$c=30.721(2) \AA$
$\beta=90.80(2)^{\circ}$
$V=2133.9(13) \AA^{3}$
$Z=4$
$D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=12.8-14.3^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Pillar, red
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer

$$
\omega \text { scans }
$$

$$
\begin{aligned}
& h=0 \rightarrow 10 \\
& k=0 \rightarrow 11
\end{aligned}
$$

5604 measured reflections
4911 independent reflections
2768 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.042$
$w R\left(F^{2}\right)=0.135$
$S=0.99$
4911 reflections
283 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\AA,^{\circ}$) for (II).

$\mathrm{Fe}-\mathrm{O} 2$	$1.969(2)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.330(4)$
$\mathrm{Fe}-\mathrm{O} 3$	$2.085(2)$	$\mathrm{O} 3-\mathrm{C} 4$	$1.262(4)$
$\mathrm{Fe}-\mathrm{O} 5$	$1.960(2)$	$\mathrm{O} 5-\mathrm{C} 10$	$1.326(3)$
$\mathrm{Fe}-\mathrm{O} 6$	$2.074(2)$	$\mathrm{O}-\mathrm{C} 11$	$1.259(4)$
$\mathrm{Fe}-\mathrm{O} 8$	$1.967(2)$	$\mathrm{O} 8-\mathrm{C} 17$	$1.321(4)$
$\mathrm{Fe}-\mathrm{O} 9$	$2.090(2)$	$\mathrm{O} 9-\mathrm{C} 18$	$1.262(4)$
$\mathrm{O} 2-\mathrm{Fe}-\mathrm{O} 3$	$80.79(9)$	$\mathrm{O} 8-\mathrm{Fe}-\mathrm{O} 9$	$80.39(9)$
$\mathrm{O} 5-\mathrm{Fe}-\mathrm{O} 6$	$80.71(8)$		

Compound (III)

Crystal data

$\left[\mathrm{Al}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{3}\right]$
$M_{r}=444.36$
Monoclinic, $P 2_{1} / n$
$a=7.897$ (4) A
$b=8.696(9) \AA$
$c=30.801$ (4) \AA
$\beta=91.40(3)^{\circ}$
$V=2115(2) \AA^{3}$
$Z=4$
$D_{x}=1.395 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10
\quad reflections
$\theta=10.4-11.8^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, colorless
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection
Rigaku AFC-5R diffractometer

$$
R_{\mathrm{int}}=0.127
$$

ω scans
$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.952, T_{\text {max }}=0.999$
5552 measured reflections
4868 independent reflections
1804 reflections with $I>2 \sigma(I)$
$h=0 \rightarrow 10$
$k=0 \rightarrow 11$
$l=-39 \rightarrow 40$
3 standard reflections every 150 reflections intensity decay: 7.3\%

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R(F)=0.064$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1054 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.228$
$S=0.94$
4868 reflections
280 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 2
Selected geometric parameters ($\left(\AA^{\circ}\right)$ for (III).

$\mathrm{Al}-\mathrm{O} 2$	$1.872(3)$	$\mathrm{O} 2-\mathrm{C} 3$	$1.315(5)$
$\mathrm{Al}-\mathrm{O} 3$	$1.956(3)$	$\mathrm{O} 3-\mathrm{C} 4$	$1.274(5)$
$\mathrm{Al}-\mathrm{O} 5$	$1.858(3)$	$\mathrm{O} 5-\mathrm{C} 10$	$1.329(5)$
$\mathrm{Al}-\mathrm{O} 6$	$1.949(3)$	$\mathrm{O} 6-\mathrm{C} 11$	$1.263(6)$
$\mathrm{Al}-\mathrm{O} 8$	$1.874(3)$	$\mathrm{O} 8-\mathrm{C} 17$	$1.321(5)$
$\mathrm{Al}-\mathrm{O} 9$	$1.952(3)$	$\mathrm{O} 9-\mathrm{C} 18$	$1.268(6)$
$\mathrm{O} 2-\mathrm{Al}-\mathrm{O} 3$	$84.6(1)$	$\mathrm{O} 8-\mathrm{Al}-\mathrm{O} 9$	$84.3(1)$
$\mathrm{O} 5-\mathrm{Al}-\mathrm{O} 6$	$84.6(1)$		

The intensity decay of standard reflections for (III) was 7.3%, which was corrected. For both compounds, all H atoms were generated geometrically and refined as riding atoms ($\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$).

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell
refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1104). Services for accessing these data are described at the back of the journal.

References

Ahmet, M. T., Frampton, C. S. \& Silver, J. (1988). J. Chem. Soc. Dalton Trans. pp. 1159-1163.
Alshehri, S., Burgess, J., Fawcett, J., Parsons, S. A. \& Russell, D. R. (2000). Polyhedron, 19, 399-405.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brown, S. D., Burgess, J., Fawcett, J., Parsons, S. A., Russel, D. R. \& Waltham, E. (1995). Acta Cryst. C51, 1335-1338.

Burgess, J., Fawcett, J., Parsons, S. A. \& Russell, D. R. (1994). Acta Cryst. C50, 1911-1913.
Finnegan, M. M., Rettig, S. J. \& Orvig, C. (1986). J. Am. Chem. Soc. 108, 50335035.

Hider, R. C., Kontoghiorghes, G., Silver, J. \& Stockman, M. A. (1984a). UK Patent Appl. GB 2136 806A.
Hider, R. C., Kontoghiorghes, G., Silver, J. \& Stockman, M. A. (1984b). Eur. Patent Appl. 0107458.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kontoghiorghes, G. J. (1995). Analyst, 120, 845-851.
Kontoghiorghes, G. J., Bartlett, A. N., Hoffbrand, A. V., Goddard, J. G., Sheppard, L., Barr, J. \& Nortey, P. (1990). Br. J. Heamatol. 76, 295-300.
Levey, J. A., Barrand, M. A., Callingham, B. A. \& Hider, R. C. (1988). Biochem. Pharmacol. 37, 2051-2057.
Lu, Z., Burgess, J., Fawcett, J. \& Russell, D. R. (1999). Acta Cryst. C55, 20512053.

Maxton, D. G., Thompson, R. P. H. \& Hider, R. C. (1994). Br. J. Nutrit. 71, $203-$ 207.

Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yu, P., Phillips, B. L., Olmstead, M. M. \& Casey, W. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2119-2125.

